

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 517–520

Green aldose isomerisation: 2-C-methyl-1,4-lactones from the reaction of Amadori ketoses with calcium hydroxide

David J. Hotchkiss,^a Raquel Soengas,^a Kathrine V. Booth,^a Alexander C. Weymouth-Wilson,^b Vanessa Eastwick-Field^c and George W. J. Fleet^{a,*}

^aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
b Doxtra Laboratories Ltd. The Science and Technology Centre, Whiteknights Boad, Beading BC6.6B7, UK b Dextra Laboratories Ltd., The Science and Technology Centre, Whiteknights Road, Reading RG6 6BZ, UK CMS Chemicals, 9 Milton Park, Abingdon, Oxfordshire OX14 4RR, UK

> Received 19 September 2006; revised 15 November 2006; accepted 22 November 2006 Available online 12 December 2006

Abstract—Saccharinic acids, branched 2-C-methyl-aldonic acids, may be accessed via a green procedure from aldoses by sequential conversion to an Amadori ketose and treatment with calcium hydroxide; D-galactose and D-glucose are converted to 2-C-methyl-Dlyxono-1,4-lactone (with a small amount of 2-C-methyl-D-xylono-1,4-lactone) and 2-C-methyl-D-ribono-1,4-lactone. Inversion of configuration at C-4 of the branched lactones allows access to 2-C-methyl-L-ribono-1,4-lactone and 2-C-methyl-L-lyxono-1,4-lactone, respectively. D-Xylose affords 2-C-methyl-D-threono-1,4-lactone and 2-C-methyl-D-erythrono-1,4-lactone, whereas L-arabinose, under similar conditions, gave the enantiomers 2-C-methyl-L-threono-1,4-lactone and 2-C-methyl-L-erythrono-1,4-lactone. $© 2006$ Published by Elsevier Ltd.

At present, all commercially available carbohydrate scaffolds contain linear carbon chains.^{[1](#page-3-0)} The Kiliani cyanide ascensions^{[2,3](#page-3-0)} on unprotected ketohexoses— D -fructose, L-sorbose,⁴ D-tagatose and D-psicose^{[5](#page-3-0)} provide an accessible set of derivatives bearing a C-2 hydroxymethyl group of value in the efficient synthesis of complex homochiral targets;^{[6](#page-3-0)} the Kiliani reaction of the $C-2$ branched sugars^{[7,8](#page-3-0)} gives $C-3$ branched sugars. The isomerisation of aldoses or ketoses into 2-Cmethyl-aldonic acids by calcium hydroxide in very low yields is one of the oldest^{[9](#page-3-0)} and most complex organic reactions with typically less than 0.5% of branched 2-C-methyl-aldonic acids being formed;[10](#page-3-0) after optimisation of the reaction of fructose with calcium hydroxide a yield of around 11% of 2-C-methyl-D-ribonic acid 3D can be obtained in several weeks.^{[11](#page-3-0)} This letter establishes the generality of the calcium hydroxide isomerisations of Amadori ketoses, derived from cheap aldoses, to 2-C-methyl-branched aldonic acids as a new strategy for the synthesis of branched sugar chirons.

The sole previous report of this transformation [\(Scheme](#page-1-0) [1\)](#page-1-0) is the conversion of D-glucose 1 with dimethylamine to fructosamine 2, which with aqueous calcium hydr-

0040-4039/\$ - see front matter © 2006 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2006.11.137

oxide gives the branched ribose derivative 3D, isolated as its lactone; 12 a practical procedure is given below for the transformation of D-galactose 6 via the Amadori ketose 5 to 2-C-methyl-lyxonic acid 4D. Although the yields are modest, the low cost of glucose and galactose make 3D and 4D accessible starting materials for homochiral targets with methyl-branched carbon chains. There are currently no cheaply available L-aldohexoses; however, inversion of configuration at C-4 of 1,4-lactones can be accomplished efficiently on a multi-kilo-gram scale.^{[13](#page-3-0)} Thus the epimerisations of $D-ribono-3D$ to L-lyxono-4L and of D-lyxono-4D to L-ribono-3L allow both enantiomers to be synthesised.

Pentoses also undergo the same transformation [\(Scheme](#page-1-0) [2\)](#page-1-0). Thus, D-xylose 7 was converted to Amadori derivative 8; subsequent reaction of 8 with calcium oxide allows the isolation of both 2-C-methyl-D-erythrono-9D and D-threono-10D acids. L-Arabinose 12, the only readily available L-pentose, allows the formation of enantiomers 9L and 10L from L-ribulosamine 11.

D-Galactose 6 on reaction with dibenzylamine in acetic acid/ethanol [\(Scheme 3\)](#page-1-0) underwent the Amadori rearrangement to give tagatosamine 5, which crystallised as the α -anomer,¹⁴ in 88% yield.^{[15](#page-3-0)} Treatment of Amadori ketose 5 with calcium oxide in water, followed

^{*} Corresponding author. E-mail addresses: [george.fleet@chem.ox.](mailto:george.fleet@chem.ox. ac.uk) [ac.uk](mailto:george.fleet@chem.ox. ac.uk); george.fleet@sjc.ox.ac.uk

Scheme 1. Reagents and conditions: (i) $Me₂NH$ or $Bn₂NH$; (ii) CaO, H₂O; (iii) invert at C-4.

Scheme 2. Reagents: (i) $Me₂NH$; (ii) CaO, H₂O.

Scheme 3. Reagents: (i) Bn₂NH, AcOH, EtOH; (ii) CaO, H₂O; (iii) Me₂CO, CuSO₄, concd H₂SO₄; (iv) (CF₃SO₂)₂O, pyridine, CH₂Cl₂; (v) KOH, diaoxane, H₂O; (vi) CF₃COOH, H₂O; (vii) Ref. [12;](#page-3-0) (viii) CH₃SO₂Cl, pyridine, DMAP.

by an acid work-up, gave as the easily isolated and separated products 2-C-methyl-branched lyxono-13D (12% yield) and xylono-14 (2% yield) lactones. There is a significant preference for the formation of cis-diol 13D rather than *trans*-isomer 14; in contrast, when glucose 1 was subjected to the same procedure only the cis-diol ribono-lactone 19D was formed with none of the epi-meric trans-diol arabino-lactone 20 being formed.^{[12](#page-3-0)}

A practical method for the synthesis of branched Dlyxonolactone 13D (the lactone derived from 4D) is as follows: A suspension of the Amadori ketose 5 (41.2 g, 115 mmol) in water (750 mL) was stirred at 70 \degree C with calcium oxide (32 g, 570 mmol) for 24 h. The reaction mixture was cooled to room temperature, filtered through Celite[®] and then passed through Amberlite[®] IR-120 $H⁺$ ion exchange resin, using water as the eluant. The water was then removed under reduced pressure to afford a crude orange oil which was purified by flash column chromatography (ethyl acetate/cyclohexane, $(6:1) \rightarrow$ ethyl acetate) to afford 2-C-methyl-D-lyxono-1,4-lactone 13D $(1.98 \text{ g}, 12\%)$ ^{[16](#page-3-0)} and D-*xylono-epimer* 14 (338 mg, 2%).^{[17](#page-3-0)} The structure of the unprotected *lyx*ono-lactone 13D was confirmed by X-ray crystallo-graphic analysis;^{[18](#page-3-0)} reaction of *xylono*-epimer 14 with acetone in the presence of anhydrous copper sulfate and acid gave 3,5-acetonide 15 (mp 155–158 °C, $[\alpha]_D^{23}$ +82.2 (c 0.67, CHCl₃)), an X-ray structure of which was also determined.^{[19](#page-3-0)} It is easy to distinguish between the diastereomers by their 13 C spectra; the chemical shift of the 2-C-methyl group of *lyxono*-isomer 13D (δ 20.7) where the diol unit is *cis* is at a significantly lower field than *xylono*-isomer 14 (δ 16.8), where the diol unit is trans.

The branched D-lyxono-lactone 13D was converted into L-ribono-lactone 19L, epimeric at C-4. Acetonation of 13D gave the 5 ring $2,3$ -O-isopropylidene derivative 16D (mp 64–66 °C, $[\alpha]_D^{23}$ +77.2 (c 1.75, $Me₂CO$)) in 99% yield; in contrast to the reaction of lyxonolactone itself,²⁰ none of the 6 ring 3,5-ketal was formed. Esterification of the free alcohol in 16D with triflic anhydride in dichloromethane in the presence of pyridine gave triflate $17D$ (mp $79-81$ °C, $[\alpha]_D^{21}$ +60.9 (c 0.60, Me₂CO)) in 100% yield. Reaction of the triflate 17D with potassium hydroxide in aqueous dioxane caused ring opening and subsequent epoxide formation; work-up with acid gave inversion of configuration at C-4 and closure to the protected lactone **18L** (mp 52–54 °C, $[\alpha]_D^{22}$ +34.2 (c 1.05, $Me₂CO$)) in 82% yield. Removal of the ketal from 18L with aqueous trifluoroacetic acid gave the unprotected L-ribono-lactone 19L (mp $160-162$ °C, $\left[\alpha\right]_D^{22}$ -87.7 (c 0.60, water) $\left\{$ lit.^{[11](#page-3-0)} for the D-enantiomer **19D** mp 160–161 °C, $[\alpha]_D^{22}$ +93 (water)}) in 90% yield. The overall yield for the conversion of D -lyxono-lactone 13D (the lactone of 4D) to L-ribono-lactone 19L (the lactone of 3L) was 73%.

A similarly efficient epimerisation of D-ribono-lactone 19D (equivalent to the open chain aldonic acid 3D) into L -*lyxono*-lactone 13L (equivalent to the aldonic acid 4L) was achieved in 68% overall yield. Lactone 19D, prepared in 20% yield from \boldsymbol{D} -glucose 1 ,^{[12](#page-3-0)} was protected as its 2,3-acetonide 18D (mp 52–54 °C; $[\alpha]_D^{21}$ –35.6 (c 1.42, $Me₂CO$) in 100% yield. Reaction of 18D with mesyl chloride in pyridine afforded mesylate 21D (oil, $[\alpha]_{D}^{24}$ -24.7 (c 0.97, CHCl₃)) in 100% yield. Treatment of 21D with potassium hydroxide in aqueous dioxane followed by an acid work-up gave inversion at C-4 to give the protected lactone $16L$ (mp 64–66 °C, $[\alpha]_D^{22}$ -74.1 (c 0.64, Me₂CO), 91% yield) which was deprotected by aqueous trifluoroacetic acid to afford the branched L-lyxono-lactone 13L (oil, $[\alpha]_D^{18}$ -77.3 (c 0.4, water)) in 75% yield.

2-C-Methyl-D-erythrono-1,4-lactone 23D, the lactone of 9D, was discovered as a natural product in Astragalus lusitanicus^{[21](#page-3-0)} and Cicer ariatinum;^{[22](#page-3-0)} D-threono-epimer 22D was isolated from Anthylis tetraphylla^{[23](#page-3-0)} and also found in tobacco smoke.^{[24](#page-3-0)} 2-C-Methyl-D-erythritol was discovered in the petals of Phlox subulata and is involved in flower development.^{[25](#page-3-0)} The mevalonate-independent biosynthesis of isoprenoids via 2-C-methyl-Derythritol phosphate is a target against malaria and pathogenic bacteria^{[26](#page-3-0)} and has increased the effort in the synthesis of 2-C-methyl tetroses. 27

Previous syntheses of lactones 22D and 23D—all of which involve several steps and need protection of oxygen functional groups—include asymmetric aldol condensations $28,29$ and use of protected chiral pool starting materials of lactic $acid^{30}$ $acid^{30}$ $acid^{30}$ and mannitol.^{[31](#page-3-0)} Although very small amounts of D-lactones 22D and 23D are obtained by the reaction of calcium hydroxide with D -xylose,^{[32](#page-3-0)} the sequential Amadori rearrangement-calcium hydroxide treatment of the pentoses D-xylose 7 and L-arabinose 12 produced enantiomeric lactones 22D and 23D or 22L and 23L, respectively, without any protection necessary.

Thus, D-xylose 7 was subjected to the Amadori rearrangement by treatment with ethanolic dimethylamine in acetic acid to give the xylulosamine 8 (Scheme 4); crude residue 8 obtained by removal of the solvent was treated with calcium oxide. After workup with acid ion exchange resin, a mixture of the branched D-threono-**22D** $(10\%)^{33}$ and D-erythrono-23D $(4\%)^{34}$ $(4\%)^{34}$ $(4\%)^{34}$ lactones was

Scheme 4. Reagents: (i) Me₂NH, AcOH, EtOH; (ii) CaO, H₂O; then H⁺.

obtained. Neither of the lactones was crystalline; very careful chromatography was necessary to obtain pure samples of each separate diastereomer. The enantiomeric branched L-threono-22L and L-erythrono-23L lactones were obtained using an identical procedure from L-arabinose 12 via the intermediate ribulosamine 11; the ratio of L-threono-22L/L-erythrono-23L was also approximately 3:1. Again the diastereomers could be differentiated by 13 C spectroscopy; the chemical shift of the 2-C-methyl group of the cis-diol erythrono-isomer 23 (δ 19.9) is at significantly lower field than the *trans*diol threono-isomer 22 (δ 16.6).

It is noteworthy that the products from the aldohexoses (glucose and galactose) have a 2,3-cis-diol in the lactone ring as the major products, whereas the aldopentoses (xylose and arabinose) form predominantly the lactone with a *trans*-diol.

In summary, the isomerisation of aldoses to saccharinic (2-C-methyl-aldonic) acids by an Amadori rearrangement followed by treatment with aqueous calcium oxide is shown to be general and provides access by green aqueous procedures to a group of hitherto unavailable branched carbohydrate chirons.

Acknowledgments

A generous gift of 2-C-methyl-D-ribonolactone from Novartis Pharma AG Basel is gratefully acknowledged.

References and notes

- 1. Lichtenthaler, F. W.; Peter, S. C.R. Chim. 2004, 7, 65–90.
- 2. Hudson, C. S. Adv. Carbohydr. Chem. 1945, 1, 2–36; Hudson, C. S. J. Am. Chem. Soc. 1951, 73, 4498–4499; Pratt, J. W.; Richtmyer, N. K.; Hudson, C. S. J. Am. Chem. Soc. 1953, 75, 4503–4505.
- 3. Ferrier, R. J. J. Chem. Soc. 1962, 3544–3549; Woods, R. J.; Neish, A. C. Can. J. Chem. 1954, 32, 404–414; Gorin, P. A. J.; Perlin, A. S. Can. J. Chem. 1956, 36, 480-485.
- 4. Hotchkiss, D. J.; Soengas, R.; Simone, M. I.; van Ameijde, J.; Hunter, S.; Cowley, A. R.; Fleet, G. W. J. Tetrahedron Lett. 2004, 45, 9461–9464.
- 5. Soengas, R.; Izumori, K.; Simone, M. I.; Watkin, D. J.; Skytte, U. P.; Soetart, W.; Fleet, G. W. J. Tetrahedron Lett. 2005, 46, 5755-5759.
- 6. Simone, M. I.; Soengas, R.; Newton, C. R.; Watkin, D. J.; Fleet, G. W. J. Tetrahedron Lett. 2005, 46, 5761–5765.
- 7. Parker, S.; Watkin, D. J.; Simone, M. I.; Fleet, G. W. J. Acta Crystallogr. 2006, E62, o3961–o3963.
- 8. Bream, R.; Watkin, D. J.; Soengas, R.; Eastwick-Field, V.; Fleet, G. W. J. Acta Crystallogr. 2006, E62, o977–o979.
- 9. Sowden, J. C. Adv. Carbohydr. Chem. 1957, 12, 35–79; Peligot, E. Compt. Rend. 1838, 7, 106–108.
- 10. Yang, B. Y.; Montgomery, R. Carbohydr. Res. 1996, 280, 27–45.
- 11. Whistler, R. L.; BeMiller, J. N. Methods Carbohydr. Chem. 1963, 2, 484–485.
- 12. Hotchkiss, D. J.; Jenkinson, S. F.; Storer, R.; Heinz, T.; Fleet, G. W. J. Tetrahedron Lett. 2006, 47, 315–318.
- 13. Batra, H.; Moriarty, R. M.; Penmasta, R.; Sharma, V.; Stanciuc, G.; Staszewski, J. P.; Tuladhar, S. M.; Walsh, D.

A. Org. Process Res. Dev. 2006, 10, 484–486, and references therein.

- 14. Harding, C. C.; Cowley, A. R.; Watkin, D. J.; Punzo, F.; Hotchkiss, D.; Fleet, G. W. J. Acta Crystallogr. 2005, E61, o1475–o1477.
- 15. Grünnagel, R.; Haas, H. J. Liebigs Ann. Chem. 1969, 721, 234–235.
- 16. 2-C-Methyl-p-lyxono-1,4-lactone 13D: mp 106-107 °C; $[\alpha]_{\text{D}}^{23}$ +70.4 (c 0.9, Me₂CO) v_{max} (film): 3421, 1773 cm⁻¹; δ_H (CD₃OD, 400 MHz): 1.43 (3H, s, CH₃), 3.88 (2H, m, H-5 and H-5'), 4.07 (1H, d, $J_{3,4}$ 3.8 Hz, H-3), 4.54 (1H, ddd, $J_{4,5}$ 5.0 Hz, $J_{3,4}$ 3.8 Hz, $J_{4,5'}$ 5.9 Hz, H-4); $\delta_{\rm C}$ $(CD_3OD, 100.6 MHz)$: 20.7 (CH_3) , 60.4 $(C-5)$, 74.2 $(C-$ 3), 74.5 (C-2), 81.5 (C-4), 179.4 (C-1).
- 17. 2-C-Methyl-D-xylono-1,4-lactone 14: mp 161-162 °C; $[\alpha]_D^{23}$ +87.3 (c 0.5 in water); v_{max} (film): 3254, 1776 cm⁻¹; δ_{H} (CD3OD, 400 MHz): 1.39 (3H, s, CH3), 3.82–3.90 (2H, m, H-5 and H-5'), 4.03 (1H, d, $J_{3,4}$ 3.7 Hz, H-3), 4.71 (1H, ddd, $J_{3,4}$ 3.7 Hz, $J_{4,5}$ 5.0 Hz, $J_{4,5'}$ 6.4 Hz, H-4); δ_C $(CD_3OD, 100.6 MHz)$: 16.8 (CH_3) , 60.4 $(C-5)$, 75.3 $(C-$ 3), 76.5 (C-2), 82.9 (C-4), 178.2 (C-1).
- 18. Punzo, F.; Watkin, D. J.; Hotchkiss, D.; Fleet, G. W. J. Acta Crystallogr. 2006, E62, o98–o100.
- 19. Watkin, D. J.; Parry, L. L.; Hotchkiss, D. J.; Eastwick-Field, V.; Fleet, G. W. J. Acta Crystallogr. 2005, E61, o3302–o3303.
- 20. Blériot, Y.; Gretzke, D.; Krülle, T. M.; Butters, T. D.; Dwek, R. A.; Nash, R. J.; Asano, N.; Fleet, G. W. J. Carbohydr. Res. 2005, 340, 2713–2718; Fleet, G. W. J.; Petursson, S.; Campbell, A.; Mueller, R. A.; Behling, J. R.; Babiak, K. A.; Ng, J. S.; Scaros, M. G. J. Chem. Soc., Perkin Trans. 1 1989, 665.
- 21. Teresa, J. P.; Aubanell, J. C. H.; San Feliciano, A.; del Corral, J. M. Tetrahedron Lett. 1980, 21, 1359.
- 22. Ford, C. C. Phytochemistry 1981, 20, 2019–2022.
- 23. de Espinosa, M.; Viguera Cobo, J. M. Anales de Química Serie C 1984, 80, 205-208.
- 24. Shumache, J. N.; Green, C. R.; Best, F. W.; Newell, M. P. J. Agric. Food Chem. 1977, 25, 314.
- 25. Enomoto, H.; Kohata, K.; Nakayama, M.; Yamaguchi, Y.; Ichimura, K. J. Plant Physiol. 2004, 161, 977– 980.
- 26. Kuntz, L.; Tritsch, D.; Grosdemange-Billiard, C.; Hemmerlin, A.; Willem, A.; Bacht, T. J.; Rohmer, M. Biochem. J. 2005, 386, 127–135.
- 27. Giner, J. L.; Ferris, W. V.; Mullins, J. J. J. Org. Chem. 2002, 67, 4856–4859.
- 28. Mukaiyama, T.; Shiina, I.; Izumi, J.; Kobayashi, S. Heterocycles 1993, 36, 719–722.
- 29. Kobayashi, S.; Horibe, M. Synlett 1993, 855–856.
- 30. Zhang, D.; Bleasdale, C.; Golding, B.; Watson, W. Chem. Commun. 2000, 1141–1142.
- 31. Kis, K.; Wungsintaweekul, J.; Eisenreich, W.; Zenk, M. H.; Bacher, A. J. Org. Chem. 2000, 65, 587–594.
- 32. Ishizu, A.; Lindberg, B.; Theander, O. Acta Chem. Scand. 1967, 21, 424–434.
- 33. 2-C-Methyl-p-threono-1,4-lactone 22D: oil, $[\alpha]_{D}^{23}$ -18.8 (c) 1.1, H₂O); v_{max} (film): 3406, 1775 cm⁻¹; δ_H^{HD} (CD₃OD, 400 MHz): 1.36 (3H, s, CH₃), 3.98 (1H, dd, J_{3,4} 4.4 Hz, $J_{4,4'}$ 9.4 Hz, H-4), 4.19 (1H, m, H-3), 4.50 (1H, dd, $J_{3,4'}$) 5.4 Hz, $J_{4,4'}$ 9.4 Hz, H-4'); δ_C (CD₃OD, 100.6 MHz): 16.6 $(CH₃), 71.8$ (C-4), 74.5 (C-3), 74.9 (C-2), 179.0 (C-1).
- 34. 2-C-Methyl-D-erythrono-1,4-lactone 23D: oil, $[\alpha]_D^{22} 35.0$ (c 0.3, H₂O); v_{max} (film): 3398, 1774 cm⁻¹; δ_{H}^{10} (CD₃OD, 400 MHz): 1.41 (3H, s, CH₃), 4.06 (1H, dd, $J_{3,4}$ 1.8 Hz, $J_{3,4'}$ 4.1 Hz, H-3), 4.16 (1H, dd, $J_{3,4}$ 1.85 Hz, $J_{4,4'}$ 10.2 Hz, H-4), 4.45 (1H, dd, $J_{3,4'}$ 4.1 Hz, $J_{4,4'}$ 10.2 Hz, H-4'); δ_C (CD3OD, 100.6 MHz): 19.9 (CH3), 72.3 (C-4), 73.4 (C-2), 73.5 (C-3), 179.4 (C-1).