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Abstract—Saccharinic acids, branched 2-C-methyl-aldonic acids, may be accessed via a green procedure from aldoses by sequential
conversion to an Amadori ketose and treatment with calcium hydroxide; p-galactose and D-glucose are converted to 2-C-methyl-p-
lyxono-1,4-lactone (with a small amount of 2-C-methyl-D-xylono-1,4-lactone) and 2-C-methyl-p-ribono-1,4-lactone. Inversion of
configuration at C-4 of the branched lactones allows access to 2-C-methyl-L-ribono-1,4-lactone and 2-C-methyl-L-lyxono-1,4-lac-
tone, respectively. p-Xylose affords 2-C-methyl-p-threono-1,4-lactone and 2-C-methyl-p-erythrono-1,4-lactone, whereas L-arabi-
nose, under similar conditions, gave the enantiomers 2-C-methyl-L-threono-1,4-lactone and 2-C-methyl-L-erythrono-1,4-lactone.

© 2006 Published by Elsevier Ltd.

At present, all commercially available carbohydrate
scaffolds contain linear carbon chains.! The Kiliani
cyanide ascensions>® on unprotected ketohexoses—
p-fructose, L-sorbose,* D-tagatose and D-psicose’—
provide an accessible set of derivatives bearing a C-2
hydroxymethyl group of value in the efficient synthesis
of complex homochiral targets;® the Kiliani reaction of
the C-2 branched sugars’® gives C-3 branched sugars.
The isomerisation of aldoses or ketoses into 2-C-
methyl-aldonic acids by calcium hydroxide in very low
yields is one of the oldest® and most complex organic
reactions with typically less than 0.5% of branched
2-C-methyl-aldonic acids being formed;'® after optimi-
sation of the reaction of fructose with calcium hydroxide
a yield of around 11% of 2-C-methyl-p-ribonic acid 3D
can be obtained in several weeks.!! This letter estab-
lishes the generality of the calcium hydroxide isomerisa-
tions of Amadori ketoses, derived from cheap aldoses,
to 2-C-methyl-branched aldonic acids as a new strategy
for the synthesis of branched sugar chirons.

The sole previous report of this transformation (Scheme
1) is the conversion of D-glucose 1 with dimethylamine
to fructosamine 2, which with aqueous calcium hydr-
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oxide gives the branched ribose derivative 3D, isolated
as its lactone;'? a practical procedure is given below
for the transformation of D-galactose 6 via the Amadori
ketose 5 to 2-C-methyl-lyxonic acid 4D. Although the
yields are modest, the low cost of glucose and galactose
make 3D and 4D accessible starting materials for homo-
chiral targets with methyl-branched carbon chains.
There are currently no cheaply available L-aldohexoses;
however, inversion of configuration at C-4 of 1,4-lac-
tones can be accomplished efficiently on a multi-kilo-
gram scale.'* Thus the epimerisations of D-ribono-3D
to L-Iyxono-4L and of D-lyxono-4D to L-ribono-3L allow
both enantiomers to be synthesised.

Pentoses also undergo the same transformation (Scheme
2). Thus, p-xylose 7 was converted to Amadori deriva-
tive 8; subsequent reaction of 8 with calcium oxide
allows the isolation of both 2-C-methyl-p-erythrono-
9D and p-threono-10D acids. L-Arabinose 12, the only
readily available rL-pentose, allows the formation of
enantiomers 9L and 10L from r-ribulosamine 11.

D-Galactose 6 on reaction with dibenzylamine in acetic
acid/ethanol (Scheme 3) underwent the Amadori rear-
rangement to give tagatosamine 5, which crystallised
as the o-anomer,'* in 88% yield.!"> Treatment of
Amadori ketose 5 with calcium oxide in water, followed
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Scheme 1. Reagents and conditions: (i) Me;NH or Bn,NH; (ii) CaO, H,O; (iii) invert at C-4.
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Scheme 2. Reagents: (i) Me,NH; (ii)) CaO, H,0.
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Scheme 3. Reagents: (i) Bno,NH, AcOH, EtOH; (ii) CaO, H,O0; (iii) Me,CO, CuSQ,, concd H,SOy; (iv) (CF3S0,),0, pyridine, CH,Cl,; (v) KOH,
diaoxane, H,O; (vi) CF;COOH, H,O0; (vii) Ref. 12; (viii) CH3SO,Cl, pyridine, DMAP.

by an acid work-up, gave as the easily isolated and sep-
arated products 2-C-methyl-branched /yxono-13D (12%
yield) and xylono-14 (2% yield) lactones. There is a sig-
nificant preference for the formation of cis-diol 13D

rather than trans-isomer 14; in contrast, when glucose
1 was subjected to the same procedure only the cis-diol
ribono-lactone 19D was formed with none of the epi-
meric trans-diol arabino-lactone 20 being formed.'?
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A practical method for the synthesis of branched bp-
lyxonolactone 13D (the lactone derived from 4D) is as
follows: A suspension of the Amadori ketose 5 (41.2 g,
115 mmol) in water (750 mL) was stirred at 70 °C with
calcium oxide (32 g, 570 mmol) for 24 h. The reaction
mixture was cooled to room temperature, filtered
through Celite® and then passed through Amberlite®
IR-120 H" ion exchange resin, using water as the eluant.
The water was then removed under reduced pressure to
afford a crude orange oil which was purified by flash
column chromatography (ethyl acetate/cyclohexane,
(6:1) — ethyl acetate) to afford 2-C-methyl-D-lyxono-
1,4-lactone 13D (1.98 g, 12%)'¢ and D-xylono-epimer
14 (338 mg, 2%).!” The structure of the unprotected /yx-
ono-lactone 13D was confirmed by X-ray crystallo-
graphic analysis;'® reaction of xyplono-epimer 14 with
acetone in the presence of anhydrous copper sulfate
and acid gave 3,5-acetonide 15 (mp 155-158 °C, [oc]zD3
+82.2 (¢ 0.67, CHCIl3)), an X-ray structure of which
was also determined.'® It is easy to distinguish between
the diastereomers by their '*C spectra; the chemical shift
of the 2-C-methyl group of lyxono-isomer 13D (6 20.7)
where the diol unit is cis is at a significantly lower field
than xylono-isomer 14 (6 16.8), where the diol unit is
trans.

The branched b-lyxono-lactone 13D was converted
into L-ribono-lactone 19L, epimeric at C-4. Acetona-
tion of 13D gave the 5 ring 2,3-O-isopropylidene
derivative 16D (mp 64-66 °C, [o]; +77.2 (¢ 1.75,
Me,CO)) in 99% yield; in contrast to the reaction of
lyxonolactone itself,”® none of the 6 ring 3,5-ketal
was formed. Esterification of the free alcohol in 16D
with triflic anhydride in dichloromethane in the pres-
ence of pyridine gave triflate 17D (mp 79-81 °C,
[cx]]z)l +60.9 (¢ 0.60, Me,CO)) in 100% yield. Reaction
of the triflate 17D with potassium hydroxide in aque-
ous dioxane caused ring opening and subsequent
epoxide formation; work-up with acid gave inversion
of configuration at C-4 and closure to the protected
lactone 18L (mp 52-54°C, [oc]2D2 +34.2 (¢ 1.05,
Me,CO)) in 82% vyield. Removal of the ketal from
18L with aqueous trifluoroacetic acid gave the unpro-
tected L-ribono-lactone 19L (mp 160-162 °C, [oc]f)2
—87.7 (¢ 0.60, water) {lit.!! for the Dp-enantiomer
19D mp 160-161 °C, [o]5 +93 (water)}) in 90% yield.
The overall yield for the conversion of D-Iyxono-lac-
tone 13D (the lactone of 4D) to L-ribono-lactone 19L
(the lactone of 3L) was 73%.
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Scheme 4. Reagents: (i) Me,NH, AcOH, EtOH; (ii) CaO, H,O; then H™.

A similarly efficient epimerisation of D-ribono-lactone
19D (equivalent to the open chain aldonic acid 3D) into
L-lyxono-lactone 13L (equivalent to the aldonic acid 4L)
was achieved in 68% overall yield. Lactone 19D, pre-
pared in 20% yield from p-glucose 1,'> was protected
as its 2,3-acetonide 18D (mp 52-54 °C; [o]} —35.6 (c
1.42, Me,CO)) in 100% yield. Reaction of 18D with
mesyl chloride in pyridine afforded mesylate 21D (oil,
[oc]f)4 —24.7 (¢ 0.97, CHCl)) in 100% yield. Treatment
of 21D with potassium hydroxide in aqueous dioxane
followed by an acid work-up gave inversion at C-4 to
give the protected lactone 16L (mp 64-66 °C, [oc]ZD2
—74.1 (¢ 0.64, Me,CO), 91% yield) which was deprotec-
ted by aqueous trifluoroacetic acid to afford the
branched L-/yxono-lactone 13L (oil, [oc}lljg —77.3 (¢ 0.4,
water)) in 75% yield.

2-C-Methyl-p-erythrono-1,4-lactone 23D, the lactone of
9D, was discovered as a natural product in Astragalus
lusitanicus®' and Cicer ariatinum;** D-threono-epimer
22D was isolated from Anthylis tetraphylla®® and also
found in tobacco smoke.>* 2-C-Methyl-p-erythritol
was discovered in the petals of Phlox subulata and is
involved in flower development.?’ The mevalonate-inde-
pendent biosynthesis of isoprenoids via 2-C-methyl-p-
erythritol phosphate is a target against malaria and
pathogenic bacteria?® and has increased the effort in
the synthesis of 2-C-methyl tetroses.?’

Previous syntheses of lactones 22D and 23D—all of
which involve several steps and need protection of
oxygen functional groups—include asymmetric aldol
condensations?®?° and use of protected chiral pool
starting materials of lactic acid*® and mannitol.3!
Although very small amounts of D-lactones 22D and
23D are obtained by the reaction of calcium hydroxide
with D-xylose,? the sequential Amadori rearrange-
ment-calcium hydroxide treatment of the pentoses
D-xylose 7 and L-arabinose 12 produced enantiomeric
lactones 22D and 23D or 22L and 23L, respectively,
without any protection necessary.

Thus, p-xylose 7 was subjected to the Amadori rear-
rangement by treatment with ethanolic dimethylamine
in acetic acid to give the xylulosamine 8 (Scheme 4);
crude residue 8 obtained by removal of the solvent
was treated with calcium oxide. After workup with acid
ion exchange resin, a mixture of the branched p-threono-
22D (10%)* and p-erythrono-23D (4%)** lactones was
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obtained. Neither of the lactones was crystalline; very
careful chromatography was necessary to obtain pure
samples of each separate diastereomer. The enantio-
meric branched L-threono-22L and v-erythrono-23L lac-
tones were obtained using an identical procedure from
L-arabinose 12 via the intermediate ribulosamine 11;
the ratio of L-threono-22L/L-erythrono-23L was also
approximately 3: 1 Again the diastereomers could be
differentiated by '*C spectroscopy; the chemical shift
of the 2-C-methyl group of the cis-diol erythrono-isomer
23 (6 19.9) is at significantly lower field than the trans-
diol threono-isomer 22 (J 16.6).

It is noteworthy that the products from the aldohexoses
(glucose and galactose) have a 2,3-cis-diol in the lactone
ring as the major products, whereas the aldopentoses
(xylose and arabinose) form predominantly the lactone
with a frans-diol.

In summary, the isomerisation of aldoses to saccharinic
(2-C-methyl-aldonic) acids by an Amadori rearrange-
ment followed by treatment with aqueous calcium oxide
is shown to be general and provides access by green
aqueous procedures to a group of hitherto unavailable
branched carbohydrate chirons.
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